JOURNAL OF APPROXIMATION THEORY 7, 238-275 (1972)

s#™P-Extensions by #™*-Splines
MicHaeL GOLOMB

Division of Mathematical Sciences, Purdue University, Lafayette, Indiana 47907
Received October 26, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

1. INTRODUCTION

Let E be an arbitrary set of real numbers, f a real-valued function defined
on E. We denote by s#™? = #™»R) (1 < p < oo, m = 1, 2,...) the space
of real-valued functions which are the m-fold integrals of functions in
L7 = Z?(R).! The main problems considered in this paper are the following:

ProBLEM I. Under what conditions is there a function Fe s#™? such
that F(x) = f(x) for x € E (in other words, an 5™ P-extension of f)?

ProsiLEM II. To determine existence and uniqueness of an extremal (or
minimal) s ?-extension Fy for which [ | D™F, |? is minimal.

ProBLEm III. To characterize F, as the solution of a multipoint
boundary-value problem.

We will also consider the s#™ ?-extension of a Taylor field on E. In this
case we are given

.ﬁ)(x)’fl(x)r'" u(ﬂc)—l(x)a X € E: (11)

where u(x), the Aeight of the field at x, is a positive integer << m. We seek an
s#™ P-egxtension of the field, that is, a function F € 3#™:? such that

(kD) D*F(x) = fi(x), xe€E, k=01 ,ux—1 (12

In 1934 [1] Hassler Whitney proposed and solved the following problem.
Let E be a closed set, EC I = [a, b], f a function E — R, and m a positive

L1t should be observed that Fe s#™? does not imply F, DF,..., D" Fe 7,
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integer. What are necessary and sufficient conditions that there exisis &
function F € €™[a, b] such that F(x) = f(x) for x € E? A necessary condition
for the existence of such an extension is evidently the following. Let x" be
any limit point of the set E, let x,, x; ,..., x,, by distinct points of £ and
J (X0, X1 5eees Xp) the m-th divided difference of f at these points. Then it is
necessary that

Lim fxg, %1 5oy X)) EXISES 8S Xy, Xg peeey Xy — X' I E 1.3

or, as Whitney expresses it, the divided differences of f of order m converge
on E. He proved that this condition is also sufficient (for related resuits
see [2-4]). The same condition is also necessary and sufficient for the €=
extendability of the Taylor field (1.1), defined on the closed set E C 1, if the
divided difference fi(x;, Xy »..., Xp) is understood as an extended divided
difference. That is, if pu(xg) > 1 we may assume x, = Xy = '+ = Xx; or
k << plxg) and in the recursive definition of fi{x,, x1,.... X, the divided
difference fy(x, , Xy 5..., Xz) is replaced by fi(x,).

A slightly strengthened form of Whitney’s theorem in which E may be
any subset of R, is proved in Golomb-Schoenberg [5]. Assume fis a con-
tinuous function £ — R (that is, the restriction of & continuous function
R — R to E) and X is a dense subset of E, fy the restriction of ftc X. If f;
has an extension Fe%™(R) then the restriction of F to E is f, hence F is
also a €™(R)-extension of f. Therefore the strengthened version of Whitney's
theorem gives

Za

&

THEOREM (Whitney, Golomb-Schoenberg). Suppose E is an arbitrary
subset of R, f a continuous function E— R, X a dense subset of E. [ has an
extension Fe€™R) if and only if the divided differences f(xy, X1 ,o.c; Xp)
(x; € X) converge. Similarly, a Taylor field (1.1), defined and contiruous on E,
has ¢ €(R) extension if and only if the extended divided differences
JolXe s Xq 5eey X)) (x; € X) converge.

This version of Whitney’s theorem is the analogue of Theorem 2.1 below.
If £ = R in the above theorem then F = f, and we obtain as a special case
the

CoOROLLARY (Brouwer, Golomb-Schoenberg). Suppose fe €(R) and X
is a dense subset of R. f is in €™(R) if and only if the divided differences
SF(xo 5 X1 5005 X)) (x; € X) converge. Similarly, a Taylor field (1.1), defined and
continuous on R, is in €™(R) if and only if the extended divided differences
JF(xo 5 X9 500 Xp) (x; € X) converge.

The last proposition does not deal with a problem of extension, but of
characterization. It was established (for the special case X = R), long
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before Whitney’s theorem, by L. E. J. Brouwer in 1907 [6]. Similarly, there is
an ™ ?(R)-characterization theorem due to Riesz [7] for the case m =1,
p arbitrary; to Schoenberg [8] for the case p = 2, m arbitrary; and to
Jerome-Schumaker [9] for the general case. A necessary and sufficient
condition is again given in terms of the divided differences of f.

THeOREM (Riesz, Schoenberg, Jerome-Schumaker). The function f is in
™2 if and only if

n—m

sup Z [ F O 5 Xiga seees Xopm)| P(Kigm — X)) < 0 (1.4)

i=1
Jor arbitrary n-tuples(n =m -+ 1, m 4+ 2,.) x; <X, < - <X, in R

It is also shown in [9] that if fe ¥(R) then it is sufficient to require (1.4)
only for equidistant n-tuples. This result is a special case of the H#™?-
extension Theorem 3.3 below. Indeed, f € €(R) is in s#™ ?(R) if the restriction
of fto some dense set X has an ™ ?-extension.

2. FIRST SOLUTION OF PROBLEMS I AND II

Suppose E is a finite set
E = {x;, X3 o0, X0}, 2.1)

where we assume # == m. By [9, p. 364] the function f: E — R has an 5#"?-
extension and, in particular, a unique extremal S#™ P-extension, which we
call the ™ ?-spline interpolating f (called p-spline in [9]). A characterization
of the extremal extension F, as the solution of a multipoint boundary-value
problem will be given in Section 4.

If we have a Taylor field {f;} [see (1.1)] defined on the finite set E, of
order <<m — 1 (i.e., u(x;) <m, x;€E), then one concludes again that a
unique extremal ™ ?%-extension exists, given by a function F, which
satisfies the interpolation conditions (1.2). The corresponding multipoint
boundary-value problem is also given in Section 4.

A solution of Problem I of the Introduction may be given in terms of
#™?-splines which interpolate f on finite subsets of E.

THEOREM 2.1. The function [ with domain E CR has an S#™P-extension
if and only if

sup f I DF, P < . 2.2)
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Here F, denotes the s#™?-spline that interpelates f on the finite subset ¢
of E, and the supremum is taken over the class of all finite subsets.

Proof. The proof is very similar to that of the corresponding theorem
concerning #™-%-extension in [5]. Because F, is the extremal S£™ P-exiension
of the restriction of f to e, we have

N
s
Qheeng

[ 1 DmE < [ | DnE P (

for any ™ ?-extension F of f. Thus, (2.2) is necessary.

Conversely, assume (2.2) is satisfied. Then one shows in the same way as
in [5] that f'is continuous. Let {x; , X, ,...} be a sequence dense in E, and let ¢,,
be the section {x, ,..., x,}. Because of the minimizing property of the spline
Fo=F, the sequence {[ | D™F, |7} is monotone nondecreasing, and since
it is bounded, the limit

lim J | D"F, |* = L (2.4)
-0 IR
exists. If L = 0 then D™F,, = O foreachn, F, e ™1, hence F,, = F,, . = =

= F, is an (extremal) 2#™?-extension of f. If L > 0 then for arbitrary e,
0 << e < 1, there exists N, such that

|~ <L | | DrE,|p <L | [3DPF, +4D"F, 17, N.<n<n,

. N (2.5)
since ¥(F, -+ F,’) interpolates f at the points of ¢, . Because £7 is uniformly
convex, this implies

J' | DnF, — D"F,. |? = O(¢)  as e—» 0. {2.6)
R

Thus {D™F,} is a Cauchy sequence in Z?2. It is known that s£™? with the
norm

)1/p

G~ %nz | Gxp)|? + J‘R | D"G 1?’; ' (2.7

is a Banach space. The sequence {F,,} is Cauchy in this space, hence converges
to some F, € 5™ It follows that

Li_l& D¥F,(x) = DEF(x), k=0,1,..,m—1 (2.8)
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uniformly on bounded sets, hence F,(x;) = F.(x)=f(x) (i=1,2,.),
and since F, and f are continuous,

Fu(x) = f(x), xeE. 2.9

Thus, F is an S#£™ ?-extension of f.
From the proof of Theorem 2.1 it is evident that condition (2.2) can be
weakened for continuous functions.

COROLLARY 2.1. Suppose{xy, X, ,...} is a dense subset of E, e,, = {X; ,..., Xn},
F,=F, is the '™ *-spline that interpolates the continuous function f on E.
Then f has an ™ v-extension if the sequence {[g | D™F, |7} is bounded.

Problem II of the Introduction has a simple answer.

THEOREM 2.2. Suppose condition (2.2) of Theorem 2.1 is satisfied so that f
has an ™ ?-extension. Then f has a unique extremal extension F, , and F,
is the limit in the normed space ™7 of any sequence of H#™*-splines O,
that interpolate f on finite subsets n,, of E, if Uy Nn>n Nx IS dense in E.

Proof. The s r-extension F, constructed in the proof of Theorem 2.1
is clearly extremal. Suppose F is another extremal s#™?-extension. Then
iF -+ LF, is also an extremal extension of f, thus

s

and since .£® is strictly convex, this implies F = F, . It remains to prove
the second part of the theorem.
It is no restriction to assume

Us () 70 = {1, x50 @.11)

n=N

1/p “ 1/» ( 1/p
» +‘J | DmF, Pl = ;J | D"F -+ DmF, |? (2.10)
( R R

Let e, denote the section {x; ,..., x,} and F, the spline that interpolates f
on ¢, . By the proof of Theorem 2.1 we have

lim F, = F, (2.12)

n—

in the normed space #™?, We show next that

fim [ | D, ¥ —f | D"F, |» = L. (2.13)
R

n-w

Clearly, || D"®, [ < L for all n. The sequence {D™®,} is weakly compact
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in the normed space 2. If (2.13) was not true then there would be a
subsequence {D™®D } that converges weakly, say to @, , and such that

J" | D, |7 < L. (2.14)
113
Since for each [=1,2,.., @ x,)=f(x,) for almost all », we have

D (x;) = f(x;). Thus @, is an H#™?-extension of f for which (2.14) holds,
which is impossible. Therefore, (2.13) is proved.

Let ¥, be the #™P-spline that interpolates f on », U - U %,. Then
¥, — F, in the normed space #™?, and since 3P, + ¥,) interpolates f
on 7, , we have

[ 170,10 < [ 13070, 0o, 1. @15)
R R

Proceeding with @, and ¥, as with F,, and F,- in the proof of Theorem 2.1,
we conclude

lim J | D@, — D™, |P = 0, (2.16)
R

n—-w0

hence @, — F, in the normed space H#™?.
If we take the special case £ = R in Theorem 2.2, we obtain a general
result concerning the convergence of spline interpolants of #™ ?-functions.

COROLLARY 2.2. The function ' ™ (R} is the limit in the normed space
H™2 of any sequence of ™ P-splines that interpolate | on finite sets v, , if
Ur Olasw m4 is dense in R.

It is readily seen that all the results of Section 2 are also valid for the
Taylor field (1.1) in place of the function f.

3. SoruTioN OF PROBLEMS I AND II 1y SpeciaL CASES

The numbers || D™F, |? are not easily calculated or even estimated, hence
condition (2.2) is not practical as it stands. We establish other conditions for
special cases.

Suppose E is an infinite monotone sequence

E:xy < xy <x5 <o (3.1a)
or bisequence

E: v <<xy < xp < xp << o {3.1b)
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and the conditions
inf (X331 — x5) =2 b1,
cE

(3.2)
Sup (X — X)) < A,
@;€E

are satisfied. We prove

THEOREM 3.1. Let E be one of the sets (3.1a) or (3.1b) for which (3.2)
holds and f a function E — R. There exists an ™ *(R)-extension of f if and
only if

z lf(xz 3 X441 5eees xi+m)lp << ®. (33)

z,€E

The extremal #™%-extension is F, = lim F, (convergence in the normed
space H™9), where F, is the ™ ?-spline interpolating f on {xq, X1 ,.-, Xpn}
in case (3.1a), and on {X_, ,..., Xg .., Xn} i1 case (3.1D).

Proof. 'We give the proof only for the case (3.1a). The proof goes through
for the other case with little change.
To prove the necessity of (3.3) suppose F is an # ™ P-extension. Then

f(x-i E) -xz'+1 seeey xi+m) == F(xz H xz'+1 3oy xi+m)
= Xpm — %)™ [F(Xig1 sees Xowm) — F(X; yorey Xigm—1)]

= (Xipm — X)7* [D"E(n;) — D™ 2F(E))/(m — 1)1,
(3.4
where

X < & < Xijme » X1 S N < Xigm -

Hence, by the use of (3.2), (3.4) and Holder’s inequality,

3 1 G Fen)l? < b Y, (i — X242 | D—2Fin) — D IFE )7

4=0
<Y (i — £)*4 | D™1F(n) — D IF(E)
=0
(3.5)

< h ZJ l D-mFlzl
=0 3

£

< mh J | DF |?

R

for all n > m, and the necessity of (3.3) is proved.
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To prove the sufficiency of condition (3.3) we construct, for each # > m,
a function H,, € #™? such that

H,(x) = f(x,), i=0,1.., 8 (3.6}
and

~

oG
J{R | D"H, 17 <K Y | (X ey Xogm)l P a=um, m-1,.. (2.7
=0

for some constant K. Because of the minimizing property of the spline
interpolant F, we have [| D™F, |» < [| D"H,, |?, hence by (3.7) and (3.4
the sequence {f | D™F, |7} is bounded. By Theorem 3.1 we conclude that f
has an J#"P-extension and that the extremal extension is F,, = lim F,, .

To construct the functions H, we introduce functions G; ({ =0, 1,..)

with the following properties:
Gi I gmwl(RL
GZ(XJ)—_—O, ]:l—.‘—l.l—{—z.,l-;*ﬂl—l,.

Gi(xi s Xitq oo xf+m) = bz’j ° ] = 09 1: 2;""

Gyx) =0, x < x;, (3.8)
D31G(x) = 0, X <X < Xppm s
DmGy(x) = 0, Xpim < %

We show below that there is a unique function G; with these properties and
that, furthermore, there is a constant C such that

o~
Gy
O

sup | D"G(x)| < C, i=90,1,2,...
xeR

Then let P e #m-1 be determined so that P(x;) = f(x;) (=0, 1,...m — 1)
and define

—
[¥%]
-
(=]

s

rn—m
H, =P+ 3 f(xX;, Xpgg s Xeym) Go» 0=, m -+ 1,..
=0

By (3.8) we have

H, (x;) = P(x;) = f(x)) for j=10,1,..,m—1,

and

Ho (%5 ey X)) = JX poees Xjms) for j=20,1,.,n—m.

640/5(3-3
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Therefore, (3.6) holds and since for j =0, 1,....,n — 1

min(i,n—m)
DmHn(x) = Z f(xz 30y xi-i—m) DmGi(x)’ Xj < X < Xit1 (311)

{=max(0,j—m+1)

we have, by (3.9),
I DmHn(x)l < Cz If(xl EALET] xi—(—m)l;

hence
[ DmHn(x)l;o < Cl Z if(xz LA xi+’m)lp

and

Tl g
| D"H, |? = DnH, |?
fﬂ jz=:0 f‘”i | |
(3.12)

n—m

< Clmh z |f(xl seres xi+-m)lp=
i=0

which proves (3.7) with K = Cymh.
It remains to construct functions G; with properties (3.8) and (3.9). We
first determine, for i = 0, 1,..., numbers y; 4 ,..., ¥; m—1 Such that

[xi s Xi41 seees Xitm 5 0: 09---, 09 )’zo] = 1:
[xi+1 s Xig 5o Xitm+1 5 0, 0,---9 Yioos yi.l] = Os (3 13)
[xi—i-m—l L] xi+m ERRRS] xz‘+2m—1 9 0: yi,o EAL) yi,m-—l] - 0

Here [x; ,..., Xi 5 Yo 5..-» V] denotes the k-th divided difference of a function
which has the value y; at x; (i =0, 1,..., k). Using the formula

Suqgcra, = |1/ T] o — %] 84 + [1/T] Ger = 3] 8,

i#0 j#1l

o [I/H (x, — xj)] B, (3.14)

J#ER

for the divided difference operator, one sees how the numbers
V1.0 » Vi s> Vi.m—1 are found successively so that (3.13) is satisfied. One also
sees that because of (3.2) there exists a constant C, such that

| 351 < Gy, i=0,1,.; j=0,1,.,m—1 (3.15)
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We next determine a polynomial p; € 71 such that
PXimes) = Yii J=0,1,.,m— 1. {3.15)
Using the fact that, for any interval 7,
i+2m—1 | {-+2m—1 X — X | )
sup | px)l < max [y sup > T =— ;;( (3.17)
XE. xe B

Vo k=it+m Xj
kg

J=i+m

we conclude, using (3.2) and (3.15), that the sequence {| pA{x; )} is bounded.
More generally, there is a constant C, such that

| Dip(xiem)l < Cy, i=0,1,.; j=01.,m—1. (318

Finally we determine, for each i = 0, 1,..., a polynomial ¢; € %2 such
that
Digix;) =0,
g(xiws) = 0, Jj=01..m—1, {3.19)
qui(xi-r—m) - DjPi(me)-

Clearly such a polynomial exists, for example, we may set
m—1
gi(x) = (x — x;y* T] (¢ — x:05) Qil), (3.20}
j=1

where Q;e #"1 is determined so that the last m conditions (3.19) are
satisfied. Using (3.2) and (3.18) one concludes that there exists a constant C
such that

max | Drg(x)| < C, i=0,1,.. (3.2

-
X §x<xi+m

We are now ready to define the functions G, :
G(x)y=0 x < Xx;,
= qz(x) X < X < Kitm s ( -

= pi(x) Xitm < X.

Cad
2
N2

Then G; € €™ YR) [observe (3.19)], and G; is seen to satisfy all the other
conditions (3.8). Since D™Gy(x) # 0 only for x; << x < x;4,, , (3.9) is identical
with (3.21). This concludes the proof of Theorem 3.1.

We now prove a theorem, similar to the preceding one, but concerned
with the # ™ ?-extension of Taylor fields. We are given again a sequence like
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(3.1a) or a bisequence like (3.1b) and we assume that condition (3.2) is
satisfied. For each point x € E we are given u(x) < m functions

fO(x)’fi(x)z"'aﬁt(m)—l(x) (323)

and we seek a function Fe #™?(R) which induces on E the field (3.23),
that is,

(1/k)) D*F(x) = fi(x), xekE, k=01L..,px)—1. (329

To formulate the following theorem it is convenient to modify the notation.
The point x € E will be called a u(x)-fold node and it is given p(x) different
labels indexed successively. Thus we have an infinite sequence

Eixy <xp <5 <o (3.253)
or a bisequence

E: ot x_.]_ < xo < X1 < b (3.25b)

with strings of equalities no longer than m. The function f defined on E,
is now multivalued. If x € E is the initial element of a string of p(x) equalities
in (3.25) then there are p(x) values fo(x), f1(x);--o, fu(y—1(x) assigned to it.
The function F on R extends (or interpolates) {f} if

(1/kY) D*F(x) = fu(x), x€E, k=0,1,.,u(x)—1 (3.26)

We define the extended difference f(x; , X;11 ».-.» Xi1m) fOr the multivalued
function f as follows. Suppose p; is the unique polynomial of degree m for
which

(l/k!) Dl\pz(x]) :fk(xi)a .] = ia i + 1:'"5 i _|_ m, k= 05 17"'9 V(xi) - 1:
(3.272)

where v(x;) is the number of times x; appears in the sector x; << x;,, << ==
< X;m Of E. Then we set

J (i s Xisa eees Xiopm) = (1/m1) Dp; . (3:27b)

If F is a function in %™ YR), the extended divided difference
F(x;, X;44 yee.r Xi1m) 18 defined in analogous fashion. If P; € #™ is such that
D¥Px;) = DFF(x;), j=ihi+ le,i+m; k=0,1,.,v(x;)—1

: (3.28a)
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then
F(x; 5 Xi41 50es Xiym) = (1/m1) D"P; . {3.28b)

F(x; ..., x;1,,) can also be obtained as the limit of divided differences with
distinct arguments y; ,..., ¥;1m , Dy letting v(x;) — 1 of the y’s coalesce at x;
=i,y i + m).

THEOREM 3.2, Let E be one of the sets (3.25a) or (3.25b) of multiple nodes
[multiplicity p(x) << m] for which
inf (xia — x) = Y,
XXy X,
(3.29;
sup (X;43 — X;) < A1
EE
holds and let the Taylor field {f;} of order <<m — 1 be defined on E li.e., the
multivalued function f with values fi(x), fl(x),,.., Sutm—1(x) at xe E}. There
exists a function F e H#™XR) that induces the Taylor field {f} on E [i.e.,
(/) D*F(x) = fi(x) for xe E, k =0, 1,..., u{x) — 1) if and only if’

Y (s Xt s Xigm |7 < 00, (3.30)
X EE
The extremal H™P-extension is F, = lim F, (convergence in the normed
space K™y, where F, is the ™ ?-spline interpolating the Taylor field {f}

on e, = {Xg, X1 ,..., Xp) i case (3.25a), and on {x_, ,..., Xy ,..., X,,} in case
(3.25b).

Remark. Condition (3.30), in form identical with (3.3), differs from the
latter because of the presence of equalities among the arguments X; ,..., X;.m -
There are exactly u(x;) terms in (3.30) involving the point x, . This condition
was conjectured by Schoenberg [10] for the special case

p=2, E=17Z, plx)=constant =2, m = 2.
Proof. We prove Theorem 3.2 for the case where F is the sequence
O=x < <x <) X — X, =0or 1. (3.31)

The modifications needed in proving the general case are technical in nature
and are well illustrated by the proof of Theorem 3.1.

To prove the necessity of (3.30) assume F is an #™?-extension. Then it
follows from the definition of the extended divided differences that

F O3 X1 50y Xm) = (Bgpm — X [F(Xpiq sees Xin) — FOCG ey Xpomed)]
= (Xp4m — X)L [D™2F () — D™F(E))/(m — 1)1, (3.32)
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where
X <& < Xppmea > X1 N Mg < Xpam
{observe that x;,,, 7 x;). From here on one proceeds as in (3.5) and obtains

(3.30).
We now assume (3.30) is satisfied. The arrays

Xo < X3 < < Xom—1 (3333.)
and
X < X1 77K Xygame (3.33b)

differ by a translation if and only if there is the same configuration of
equalities and inequalities in (3.33a) as in (3.33b). There are no more than
a finite number M of different configurations. Hence (3.33b) is congruent
to one of M configurations (3.33a), which we label Xj,..., Xj,. Let us
consider one of them

Xixg < x < < Xy - (3.39)
We construct a function G with the properties (compare (3.8))

G e & (R),
G(x;) = 0, j=12,..,m—1,
G(X;5 5 Xj41 seees Xirm) = Oo; j=20,12,..,

G(x) = 0, x <0, (3.35)
D3m—1G(x) = 0, 0 < X < X »
DnG(x) = 0, Xm < X.

We make the convention that if x; appears »; times among Xy ,..., X, then
the second equation above means D*G(x;) =0 for k=0,1,...,v; — 1.
Similarly, G(x; ,..., X;.) is to be interpreted as an extended divided difference.
To construct G, we first determine, as in (3.13), numbers y,, ¥4 5. Vi1
such that

[X0» X1 peees X 3 0, 0,..., 0, 3] = 1,

[xl s x2 ERLET] x‘)).1.+} ;' 0’ 0,-"3 J"o 3 }’1] = 0, (336)

[xm——l > Xm seees Xom—1 » Oa Yo s V1o y‘m—l] = 0

The divided differences in (3.36) should be interpreted as extended divided

differences, as defined above. If, for example, x; << x;,; = ** = X, , then

[X0 5 X1 seeer X025 0, 0,..., 0, yy] denotes the extended divided difference of a

function ¢ for which Digp(x;) = 0forj =0,...,m — i — 1 and D"p(x;) = ¥,.
We next determine p € 2™ such that

P Xngi) = Vi, j=0,1,.,m—1. (3.37)
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For multiple nodes these equations should be interpreted as similar ones
above. For example if x,, = X,y = =" = ¥4, then the first p equations
(3.37) mean: Dip(x,) =y;forj=10,1,..,p — L.

Finally we determine g € #*"~2 such that

Dig(0) = 0,
g{x;)) = 0, j=01,.,m—1, {3.28)
-Dj{'I(xm) = D’P(«‘Cm)
with the same conventions concerning multiple nodes as above. In particular,
if x; <x;7=-"=x, then the last equation is understood to mean
Dim=ig(x,,) = DIt p(x,,).
We now define
G(x) =0, x <0,
= gq(x), 0<x<x,, {3.39
= p(x), Xp < X.
Then G satisfies all the conditions (3.35). If we carry out the described
construction for each of the distinct configurations Xj ,..., X, (3.34), we

obtain functions G1,..., GM. If the array x; < x;4 < < X9z iS cON-
gruent to X;, we set

Gix) = G™(x — x,). (3.40)
We then have by (3.35)

G{x;05) = 0, ji=0,1,., m~4 1, (3.41)
Gi(xi+f s Xigjt1 oeees xi+i+m) - 8;1 ’ J = Oa 15 29 .

Let now P € ™1 be determined so that P(x;) = f(x)(j =0, 1,..., m — 1},
with interpretation concerning multiple nodes as above, and set

n-m

H, =P+ Y f(xi,Xis1seer Xiim) Gs n=m, m-+1,... (3.4
i=0

By (3.41) we have

H,(x;) = P(x;) = f(x) (G=0601..,m—1
and
H (X5 500y Xim) 7= F (X5 yes Xjpm)s
hence
H,(x) = f(x) i=0,1,.,n (3.43)
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This means that, when restricted to the subset {x, ,..., x,} of E, the function
H, induces the given Taylor field {f}.
By (3.35) and (3.42),

min(j,n—m)
DmHn(x) = Z f(xz avrey xi+m) DmGz(x)’ Xg < X < Xit1 - (344)

i=max(0,j—n-+1)

Since each of the functions G, is a translate of one of the functions G2,.... GY,
and since D™G’ has its support contained in [0, m] it follows that the sequence

sup | DG (x), i=0,1,2,. (3.45)
zeR
is bounded. We can then proceed as in the proof of Theorem 3.1 and con-
clude that the sequence {[| D"H, |*} is bounded. By Theorem 2.1, this
proves the sufficiency of condition (3.30).
In the next theorem we deal with a set of the form

E= e, en = (X" < X" < < X} 0<x"<1. (346)

We assume that each e, includes the m points x; ,..., x,, and that

lim max {x,", X" — %" peers Xn(m) — Xotm)—1>1 — Xx} = 0, (3.47)

n—->wc

min  (x%; — x7)/ max  (xFp —x") =8 >0, n=1,2,....
i=1,....,N(n)—1 i=1,...,N(n)—1
(3.48)

We say, E is a family of quasiuniform partitions e, , dense in [0, 1]. As
before, let the function f: E— R be given. Because of (3.47) f is densely
defined in I = [0, 1]. If f has an s#™?(R)-extension then fis continuous and
its uniquely defined continuous extension F to I is in €™ 1(I). Clearly, the
extremal s#"™P-extension F, of fis given by

m—1
Fv) =Y % DFF(0) %%, x <0,
k=0 M
— F(x), 0<x<1, (3.49)
m—1 1

= ¥ GDFOE—-DY,  1<x
k=0 *

Thus, f has an £ ™P-extension if and only if F e s#£™%(]).
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TueorREM 3.3. Let E be a family of quasiuniform partitions e, , dense in
{0, 1], and f a continuous function E — R. The continucus extension ¥ of f to
I=10,1)is in 72(1) if and only if

N{n)—m
sup Z if(xi'na x?—kl seery xzn—;-m)]p (x?+-37z - Yin) < 0. {\35‘{)}
i=1

n

The extremal H™*(R)-extension F, of f is given by (3.49) and also by
F.. = lim F,, (convergence in the normed space ™ ?), where I, is the s -
spline that interpolates f on {x,™,..., Xnu)-

Proof. The proof of the necessity of condition (3.50) is very much like
that of condition (3.3), and is also contained in [9], hence omitted. To prove
sufficiency we proceed as in the proof of Theorem 3.1 and construct functions
H, € #™¥[) such that

H,(x;™) = f(x,™), =1, ,Nmn)—m-+1

(3.51)
N(n)—2m+1

JII DmHn Ip < K Z [f(x’i.na-*-a x?—(»-m)]p (x;fﬂ+m - xin)z n= 13 25
i=1

for some constant K. Then [p | D™F, | < [,| D™H, \* and it follows from
(3.50) and (3.51) that the sequence {[ | D™F,, |?} is bounded. It follows readily
that the sequence {F,} is bounded and equicontinuous on I. Let {F{x)} be a
subsequence such that lim F,(x) = Fy(x), x € I. From the weak compactness
of the sequence {F,} in 2 ? with norm (2.7} it follows that Fy € £ #(f).
Since F(x;*) = f(x?) and since |, ;... nvo)—mez (X7} is dense in T we conclude
F, = F, hence F e #™?(I). That lim F,, = F, (in #™?) follows now in the
same way as in the proof of Theorem 2.2.

To construct the functions H, we determine, for n = 1,2,... and
i=1,2,.,N@® — 2m 4 1 numbers y ..., ¥ ,._; such that

. n n n . K2 o
%57, X541 geees Xt 30, 0,., 0, 35 1 = 1,
7 n N . W N -
[XPs1 5 XFhp seees Xima1 3 0, 00y Y50, yinl = 0,
.n [ ) . R n .
[’\i—i—'m—l s Xitm 5eers Xitom—1 5 0: Vig oo )’i,'m-1} — O'
As in (3.15) one concludes, using (3.48), that there is a constant X, such that

|38 | < Ky, n=12., i=1,2,.., N — 2m + 1,
j=0,1,.,m—1, (3.53)
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where we have set

h, = max (x7q — x"). (3.54)
Next we determine polynomials p,» € 71 and g, € #°"~2 such that

P"(Xiims) = Vis (3.55a)
and

DgMxH =0, n=1,2,.,
g;"(x2.) = 0, i=1,2,.,Nn—2m-+1, (3.55b)
Dq"(X}im) = D" (X} um)-
Using (3.53), we find that there is a constant K, such that

,max, | Dmq,*(x)] < K., n=1,2,., i=1,2,..,Nmn —2m+ 1.
NG (3.56)

¥

Finally, let P, € -1 be such that P*(x;") = f(x;) (i = 1,..., m) and

N{n)—2m+1
Hy=Po+ Y " Xl e Xien) G (3.57a)
=1
where
GMx) =0, x < X"
=¢"(x), X" < x<XPm, (3.57b)
= p;"(x), Xiim < X.

Then it is seen that H,(x,”) = f(x) fori = 1,..., Nm)—m + 1, H, € £"2(]),
and because of (3.47) and (3.56)

N{n)—2m+1 )
J‘ I DmHn |D < K311'71 Z If(x'iﬂ,"-’ x1n+n)|p
I i=1
(3.58)
N(n)—2m+1

< K Z ]f(xina--': x?_‘_")]p (x?+m - xi")'
i=1

for some constants K , K. Thus H,, satisfies conditions (3.51) and the theorem
is proved.
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4. EXTREMAL ™ P-EXTENSIONS AS SOLUTIONS OF
BOUNDARY-VALUE PROBLEMS

Let /2 E— R have an " 7P-extension, hence a unique extremal £ %
extension F . Since f must necessarily be continuous f has a unique con-
tinuous extension f to the closure E of E, and F, is also the extremal 5. 2.
extension of f. Thus in this section, where we assume the extensibility of f,
it is no restriction to assume that the domain £ of fis closed. For abbreviation
we set

Lp

|l = ([ 171)

We first show that extremal #™?-interpolants are characterized by a
nonlinear orthogonality property.

THEOREM 4.1. A necessary and sufficient condition that the funciion
Fe #mYR) is the extremal 3¢™ v-interpolant of a function on the closed set E
s

J' | D"F |71 sgn(D"F) - DG = 0 (4.1)
R

for every function G € ™ ?(R) that vanishes on E.

Proof. Let #5*(E) denote the class of functions G € S#™ P that vanish
on E. Assume (4.1) holds for every G € ;- P(L£). Then Holder’s inequality
gives

| DmF|jp = JR | D™F [P sgn(D™F) DnF
— | _LD7F (772 sgn(DF)(D"F + D"G)
< [ _|D"Fir | DUF - DG |
< || DF|P-1 || DmF -+ DGl .

Hence, if we set F - G = H,
(| D*F|, < | D"H |, 4.2)

and since this is true for every function H € 5##"-? which agrees with F on &,
the sufficiency of (4.1) is proved.
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Now assume, G € 5 ?(E) and
J‘R | DrF |1 sgﬁ(DmF) DG = A > 0. (4.3)
Given ¢, > 0 we choose b so large, I, = [—b, b], such that for all | e | < ¢,
J'R\Ib | D"F — eDmG |71 | DmG | < 3A. 4.4

Then we choose 6 > 0 such that for any set D C I, with measure | D| < §
we have

f | DmF |71 | DmG | < 1A. (4.5)
D
Next we find a closed subset C C I, of measure | C'| > 2b — 8 in which

DmF and D™G are continuous (Lusin’s theorem). We also assume that C
is so chosen that D™F(x) =% 0 for x € C. Let

min | D"F(x)| = . @.6)

Furthermore choose € < g, so that
max | D"G(x)| < p/e; . 4.7
Then for | e | < ¢

| 1 DmF 22 sgn(DmF — eD"G) DG
I

> J | DF |1 sgn(D"F — eD™G) DG — }A
C

(4.8)
= | _| D"F [ sgn(D"F) DG — 34
> A— 34— 14— 4= 3A.
Thus we can choose €, << €; such that for [ e ] < e,
f | DF — eD"G |71 sgn(D"F — eD"G) D"G > }A. 4.9)

b

Equation (4.9) together with (4.4) yields

e f | D"F — eD™G |7 sgn(D"F — eD™G) DG > ed, 0<e<e,.
R
(4.10)
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Therefore, using Holder’s inequality again,
| D"E — eDmG |2 = f _D"F| D"F — eD"G |* sgn(D"F — eD"G)
— e ’R D"G | D"F — eD"G |71 sgn(D"F — eD™"G)

< [ D"F|D"F — eD"G [ sgn(D"F — eD"G)
R

<] I DE || DF — eDnG >t
< D"F|l,|| D"F — eD"G [
and since (4.3) implies || D™*F ||, > 0,
| D"F — eD"G [j, <!/ D"Fi,. (4.1%)

Since this is impossible, so is (4.3), and the necessity of condition (4.1) is
proved.
We now set, for abbreviation,

| D"F |~ sgn(D"F) = (D™F)P1, (4.12)
Let I be an open interval which contains none of the points of E. Then {4.1}
implies
D™D™F)P(x) = 0, xel; (4.13)
hence the restriction of (D™F)?~ to I is a polynomial of degree < m — 1, say
(D"F)PY(x) = P[(x), xel (4.14)
Then
sgn D™F(x) = sgn P,(x),
| D™F(x)| = | P{x)]2/ 1, xel, {4.15)
DF(x) = | P{)[V*~Y sgn Pr(x).
In particular, D™F is continuous in [ and has one-sided limits at the finite

endpoints of 1. Also, D™F is infinitely differentiable in 7 between zeros of ;.
Suppose a = inf £ > — o0. Since

| DMF(X)|P = | P(x)|tH/t-1], x < a, (4.16)
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where P, e 271, we conclude that F cannot be in ™7 unless P, = 0.
The same conclusion holds for x > & if b = sup E < . Thus

D7F(x) = 0, x <infE and x > supkFE. 4.17)

Now consider an isolated point x; of E, and choose 6 >0 so that
[x; — 8, x; + 8] 0 E = {x;}. Also choose functions G; € €*(R) with support
in [x; —8,x; +8] and such that D*Gux) =8 (= l,...,m — 1;
k = 0,..., m — 1). Then integration by parts in (4.1) gives

Dm—l—j(DmF’)f—l(xi + 0) . Dm—l—i(D'm}:')f—l(xi + 0) — 0,
Jj=1,..,m—1. (4.18)

Thus, (D™F)?™* has continuous derivatives of order <{m — 2 at the isolated
points of E. In particular, if @ = inf E > — oo is an isolated point then
by (4.17)

D¥(D™F)?a -+ 0) = 0, k=0,1,.,m—2 (4.19)

and the corresponding result holds for b = sup E.

In the following let E’ denote the set of limit points of E. Both R\ F
and R\ E’ are open sets and are the unions of disjoint open intervals.
Condition (4.13) can be expressed as D™(D"F)?(x) = 0 for xe R\ E,
and condition (4.18) as (D™F)*' e € %R\ E'). We thus have proved

THEOREM 4.2. If F is the extremal ™ *-interpolant of a function defined
on the closed set E then
(@) (DmF)te®™(R\E)NE 3R\ E),
(i) Dm(DmF)P*(x) = 0,xe R\ E, (4.20)
(iii) D™F(x) = 0 for x <<inf E and x > sup E.

Condition (4.20i) reduces to a simpler one at points x where D™F(x) == 0.
Assume D™F(x) > 0. Then

D(D"F)?-(x) = (p — 1)(D"F)»(x) D™IF(x),
and this function is continuous at x if and only if D™+ F is. Similarly for the
higher derivatives. Thus, we have

CoroLLARY 4.1. At points x where D"F(x) == 0 condition (4.201) of
Theorem 4.2 is equivalent to

The derivatives DF(x),..., D*™F(x) exist and are continuous if x ¢ E.
(4.20i")
The derivatives DF(X),..., D**=2F(x) exist and are continuous if x ¢ E'.
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We indicate the few changes that must be made if we deal with the extension
of a Taylor field rather than a function. We assume Z is closed, the Taylor
field (1.1) is of order <{m — 1 and it is induced by a function in #7?(R),
so that a function F with minimal [ | D™F |? exists for which

(k) DVF(x) = fi(x) k=0, 1, u(x)—1, xek

We say that F is the extremal s ?-interpolant of a Taylor field on ¥ of
height u. In place of Theorem 4.1 we have

THEOREM 4.la. A mnecessary and sufficient condition thar the function
Fe#m™2(R) is the extremal ™ -interpolant of a Taylor field of variable
height << m on the closed set E is

f | DmF {71 sgn(D"F) - DG = 0 4.21)
ity

for every function G € H™*R) for which
D*G(x) = 0, =0,1,.,u(x) —1, xekE. {4.22)

Theorem 4.2 is replaced by

Tueorem 4.2a. If F is the extremal #"-P-interpolant of a Taylor field of
variable height u << m on the closed sei E then

(i} (D"F)* e €™(R\ L); DY(D™F)'(x) exists and is continuous ai
xeRNE' fork =0,1,.,m—1 — u(x) [no condition if u(x) = m},

(i) D™D"F)*x) =0, xe R\ E,
(iti) D7F(x) = 0 for x < inf E and x > sup E.

(4.23)

Corollary 4.1 also has its analogue. For x such that D™F(x) == 0 condi-
tion (4.23i) is equivalent to
DF(x),..., D*F(x) exist and are continuous if x ¢ E.
DF(x),..., D¥1-e@ [(x) exist and are continuous if x¢ E' (4.23i")
[no condition if u(x) = m].
We have shown that the extremal s# ™ ?-interpolant of a function or a

Taylor field on a closed set £ is the solution of a multipoint boundary-vaiue
problem of the nonlinear (if p == 2) differential equation

Dm(DmF)Sﬂ—l —_— 0’ (424\19
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where E is the set of boundary points, which appear as knots (points of
diminished smoothness) of the solution. If x is a boundary point such that
x € EN E" and p(x;) < m then the condition

D@ pmEyP-i(y) exists and is continuous, 4.25)

is nonvacuous, and specifies a “spline continuation” across the point x.
If x € E’ or u(x) = m, then there is no spline continuation across x, and we
say these points form the essential boundary E, of the problem

E, = E U{xecE: plx) =m}. (4.26)

Suppose xy € E, . Let {f~} and {f*} denote the restrictions of the Taylor
field {f} to {x < x,.} and {x > x,}, respectively, and let F,* and F,~ denote
the corresponding extremal s# ™ ?-interpolants. Then clearly

F*M(x% X < x* 1
Fu(x) =
F*+(x)> X > x* H

defines the extremal s ?-interpolant of {f}. Thus each point of the essential
boundary breaks the extremal extension problem up into uncoupled
problems. E; is a closed set. Let

R\E =UJ, 4.27)

where each J, is an open interval and J, N J, = ¢ for u 5= v. We call the J,
the disjoint intervals of the extension problem. The above discussion shows
that the extremal £ P-extension problem breaks up into a set of uncoupled
problems, one for each disjoint interval.

Let J be one of the disjoint intervals. The set J N E is discrete and, more-

over, u(x) << m — 1 for x € J N E. The restriction of {f} to J N E consists of

Fox), 1)y frt(X), xeJNE (4.28a)

and

JoOxi)s [ Frna(04) (4.28b)

at each of the finite endpoints of J (if any). Observe that J N E may be
empty. This can happen only if J has at least one finite endpoint since we
assumed >,z u(x) = m. )

Put E; = J N E and suppose F; is the restriction to | of the extremal
™ ?(R)-interpolant of {f}.
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By Theorem 4.2a we have
Q) Fyes#™(J); (D F)2 e €™(J “ E,); DX(D™F,)I; exists and is
continwous at xe E; fork = 0, L., m — 1 — u(x),
(i) D™D"Fprx)=0,xeJ\E;,

Gii) (1K) DPF,(x) = fu(x) for k = 0, 1,y u(x) — 1, x € By ;
(1/k)y D¥Fy(x) = fi(x) for 0, 1,...,m — 1, xe€ E,\ E,.

(4.

N

9)

Observe that the last condition refers to the finite endpoints of E; {(if any).
If supJ = o, sup E; < oo then D™F;(x) =0 for x > sup E; by Thec-
rem 4.2a. This condition is not formulated in {4.29) since it is an automatic
consequence of (4.29ii) and the fact that F; e s#™?(J). A similar comment
holds for the case inf J = — o0, inf E; > — co.

Suppose now that the function F satisfies conditions (4.29). If £, is a finite
set then we can perform integration by parts in the integral

J’ (D"F)’™* D"G (4.30)
J

and, using properties (4.29i, ii), we obtain 0 for any function G € ™ 7(J)
for which D*G(x) =0 (k=0,1,..,p(x) — I, x€ E;) and D*G(x) =10
(k=0,1,...,m — 1;xe E; _E,). By Theorem 4.1a and because of (4.2%iii)
F is the restriction to J of the extremal 5 #{R)-interpolant of {j'}. Thus,
we have proved

THEOREM 4.3. If J is one of the disjoint intervals of the S V-extension
problem and E; = J N E is finite then F;e J72(J} is the restriction io J of
the extremal ™ »(R)-interpolant of the Tayior field {f} if and only if cond:-
tions (4.29i, 1i, iii) are satisfied.

Thus, for cach disjoint interval J that contains only finitely many of the
points of £, the component F; of the extremal 5™ ?(R)-extension of {f} is
completely characterized as the solution of a boundary-value problem, as
formulated in (4.29). In particular, if £ is finite itself and p(x) << m for alt
x € E, (hence there is only one disjoint interval J = R) then the extremal
P R)-interpolant F, of {f} is completely characterized by (4.29).

In the next section this characterization of the extremal £ ™ ?-interpolants
will be proved for disjoint intervals containing infinitely many points of E.
It should be observed that proving the sufficiency of conditions (4.29) is
equivalent to proving that the boundary-value problem has a unique solution.
In fact, if F; is the extremal extension, then F; is a solution of the boundary-
value problem (4.29) by Theorem 4.2a, and if the latter has only one sclution

640/5/3-4
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it must be F; . Conversely, if every solution of (4.29) is an extremal extension
then there can be no more than one solution since the extremal solution is
unique.

5. INFINITE DISCRETE SETS

As in the preceding section let J denote one of the disjoint intervals for
the ™ ?-extension problem. We now assume that the set E;, = ENJ of
interpolation nodes contained in J is infinite.

To prove the following theorem we need a lemma.

LeMMA 5.1, Suppose x; <<x; < x5 < -, limx, = x, < 00,J = (Xy, Xs),
D"U(x) = 0 for x # Xy , X1 5., J7| U'|¢ < 0 for some g, 1 < g < o0. Then

sup | DPUX)| = o(| Xpyg — X%, |7*) asn—> o0 k=0,1,2,...

Tn ST <Tr1 5.1
Proof. Let
Uy =y (nl)l n <X <X (5.2)
)”) - & Ay Xpig — X - > Xn X n+l - .
Then

1 Lyl 1, m—1 q m—1
(U@itdy = [ |Y awxt [ de =K S laglt  (53)

Xpy1 — Xn dg, ol 120 1=0

for some K > 0 independent of n. Since the left-hand side is o(| X, — X, [7Y)
as n — oo we conclude

A = 0(| Xpyq — X, |79 as n— oo, I=0,1,...m—1. (54

From (5.2)
. o _ X — X, I~k
DEU(x) = (Xp31 — X)) z g k), (xm 2 xn) y Xn <X < Xy
and by (5.4)
m—1
Sllp ] DkU(x)I i )‘n+1 xn —‘L Z [ anl I k')

By < <A1
= o] Xp4q — X, |7* Y9 as n— 0, k=0,1,2,...
(5.5)
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Remark. The lemma is clearly valid also for ¢ = 1 and ¢ = 0.
We now prove

THEOREM 5.1. Suppose J = (a, b), —oc < g < b < o0, £;is a discrete set
in J, and {f} is the Taylor field

fi(x), k=0,1,.,ux) — 1, xeE;,
fil@), k=0,1,...,m—1 if a> —w,
D), k=20,1,..m—1 if b <40,

bl
(%))
N

where u(x) < m — 1, which is assumed to have an S#™-?(J) extension. Then
the multipoint boundary-value problem

() Fed™*J), (D"F)" e G (J \ E,); D*(D™F), exists and is con-
tinuous at xe Eyfork =0, 1,..,m — 1 — p(x).
@iy D"(D"F);™(x) =0, xeJ\E;. (5.7)
(i) (JEDDF() = filx), k = 0, Lo, u(x) — 1, x € E,,
(1/kD)D¥F(a) = fi{a), k = 0, 1,...,m — 1 if a > —oco0,
(J)DMEB) = fiulb), k = 0, 1, — 1if b < 00,

has a unique solution F = F;. Fy is the extremal F-v(J)-interpolant of the

field {f}.

Proof. By Theorem 4.l1a and the remarks at the end of Section 4 it
suffices to prove

J‘ (D"F)r™ DG = 0 (5.8)
J

for every function G € 3™ ?(J) for which
D*G(x) = 0, k=0,1,.,ux)— 1, xeE;,

DG(@) =0, k=01,,m—1 if a> —o0, (5.9)
DG(b) =0, k=0,1,..,m—1 if b < }oo.

We carry out the proof for the case

a > —oo, b = lim x, < 0,
0~
E; = {x; < x; < x5 <<}
We set

U= (D"F)r™ (5.11)
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Since Fye #™2(J), U is in LAJ) (p* + g = 1), and because of (5.7ii),
U satisfies the hypotheses of Lemma 7.1. Therefore,

sup | DP*Ux)| = o(] Xpaq — X, | 75719 as n—> o, k=0,1,2,...
@y <@ <pyr (5.12)

If one performs (m — 1) integration by parts in (5.8) and uses (5.7, ii)
and (5.9), one obtains

+En wlen)—1
[Tv@prGeydy =Y (10U DriG)x). (513)

Since G(x,) = 0 (n = 0, 1,...), there are points &, such that

Xn < €nn < Xptm—1 n=201,..,

D*G(€,) = 0 k=1,2,.,m—1

(5.14)

Writing
L

D" 1G(x) = J DG(£) dE, (5.15)

f’n,m»—l

we obtain by the use of Hélder’s inequality

ntm—1 1/o
max | DG < | Xpmy — X M) [ | DUGEOI dE|

Xy XXy ey z,

hence

max | D"1G(x)] = o(] Xpym— — Xu 119 as n—» oo. (5.16)
X KX Xy g1

Since
Dm—'ZG(x) —_ J‘w Dm“lG(f) dga

€n,m—2

(5.16) gives

max | D" 2G(x)| = o] Xpim—a — Xn |[FTL/9) as n - oo, (5.17)
Xy SXSXppme1

Proceeding in this fashion, one obtains generally

max | D7 F1G(x)| = 0(] Xpim—1 — Xq [FTHY) as n-—> o0,

X SXSXpym—1
k=0,1,.,m—1. (5.18)
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Set
8y, = opnax (*nre — Xarid)
= Xn()4r — X, A =0,1,2,.,
where
n < Nny<n+m—2
By (5.12),

DkU(xN(’Il)) = 0(8;76—1/&)’ k = 03 15-"
and by (5.18),

Dm—k—lG(xN(n)) — 0(3;‘;+1/ , k = O’ I,...
Thus, (5.13) gives

“ e U(x) D"G(x) dx = o(1) as n— o0

Yo

and this proves (5.8).
If

a=limx_, > —o0, b= lim x, < o0,

n>® n—
Ey={x_,<x, <xp<x3 <-},
then we start with

ulz,)—1

[ upne =Y (D 0rupG) )
Len k=0

ulas) —1

— Z (— I)k—l(Dk UDm-——k.—lG)(x_n)

k=0

I3
€N
Lh

(5.19a)

(5.195)

{5.22)

and proceed as above with each of the two sums in (5.22) separately, to
conclude (5.8). This exhausts all possibilities, hence Theorem 5.1 is com-

pletely proved.

By the result of Theorem 5.1 and the remarks made in Section 4 concerning
the breakup of the boundary-value problem (4.23} we have demonstrated
that the boundary-value problem uniquely characterizes the extremal
Hmrextension of a function or Taylor field. This is the solation of

Problem IIT of the Introduction.
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6. Tue CONE OF #"-P-SPLINES

We consider the class of extremal #™:?-interpolants of Taylor fields of
given height p < m on a given set E.
A function F: R — R that satisfies the conditions

() Fed™ R), (D"F); e "R\ E)NE" R\ E),
Gi) D™(D"F)"'(x) — 0, xe R \_E, 6.1)

where E is a closed subset of R, will be called an s#™:?-spline with (simple)
knots in E. If F satisfies the conditions

(i) Fe#™*R), (D"F)?™ e €™(R \ E), D*(D™F)%, exists and is con-
tinuous at xe R\ E'fork =0,1,...,m — 1 — u(x), (6.2)
@) D™D"F)2(x) = 0,xe R\ E,
where E is a closed set and u a function E— {1,..., m — 1}, F will be called
an 2™ ?-spline with knots of (variable) multiplicity p in E.
It was seen in Sections 4 and 5 that F is an s#™?-spline with knots of

multiplicities p in E if and only if F is the extremal ™ ?-interpolant of the
Taylor field {f}

£l = k) D'F(x), k=0,1,.,u()—1, xcE  (63)

It was also proved that F is an #™ ?-spline with knots of multiplicity p in E
if and only if

f (D"F)*™ D™G = 0 (6.42)
R

for every function G such that

D*G(x) =0, Kk =0,1,.,u(x)—1, xckE. (6.4b)

We denote the class of #™?-splines with knots of multiplicity p in E by
& =S (F5 T if p=1). We wish to study some topological properties
of & as a subset of the Banach space #°:? with the norm

G161, = |5 166w+ [ 1D

g=1

(6.5)

Here we will assume that {x%,..., x™} is a fixed subset of E.
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For a closed set £ and multiplicity function u: £ — {l,..., m} we have the
essential boundary

S’

E, = E'\J{x < E: u(x) = m} (6.6

introduced in Section 4. We redefine, if necessary, the multiplicity functicn z
such that
wx) = m, xe k.

o
()

7

This is justified since if the Taylor field {f} has an 2™ ?-extension F, then
Fe?€™YR)and f e €YE) (by Whitney’s definition). The values f{x}, x € E,
determine uniquely f,(x),..., fin-2(x) for x € £’ such that

(1/kY) D*F(x) = fi(x), k=01..m—1, xeE.
With convention (6.7), (6.6) becomes
E, = {xeE: px) = m. (6.8}

We call the points of E, the essential knois and those of EN E, the non-
essential knots of the splines in &2 . If £, contains no points other than
inf E and sup E, we say the elements of S are elementary splines. In this
case the set £ without inf E and sup F is discrete and p < m — 1 on this set.
If ¢ =inf £ > —o0, we may have g £’, hence p(a) = m, or a¢ E' and
ula) < m — 1; similarly if b = sup £ << +¢0.

In Section 4 it was shown that every &% 2-spline extension F of a field {f}
breaks up into segments F, corresponding to the disjoint intervals J, in the
decomposition R\ E, = (J)J,. The #?-spline which interpolates the
restriction of the field to E, = £ N J, is an elementary spline and its restric-
tion to J, is F,. Thus we may restrict ourselves to consider only classes of
elementary splines.

If p = 2 then (D™F)*~ = D™F and & is clearly a (linear) subspace of 3# ™2,
For p % 2, & is not a subspace (nor convex), but is a cone since Fe &
implies aF € & for every « € R. We prove

FHEOREM 6.1. The cone & = ym’? of elementar splines is closed and
E.p ¥
nowhere dense in the normed space S0P,

Proof. That & is nowhere dense is trivial. In fact, choose an open
interval J such that J N E = . The restrictions of the functions of & 10 J
are solutions of the differential equation D*(D™F)*™ = 0 and clearly are
nowhere dense in #™?(J). To show that & is closed, assume F, & .%
(n=1,2,..), F,— Fin s#™? Set

U, = (D"F)?™ = | D"F, |** sgn(D"F,), n=12..

U = (D7"F)§_1 _ I D"F {p—l sgn(DmF). 56'9}
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The functions U,, and V are in LYR) (p~* + g~ = 1). The restriction of U,
to any bounded interval J such that J N E = ¢ is a polynomial of degree
<m — 1, and the convergence F,, — F in ##™? implies uniform convergence
U,— U on J, hence U, — U in L4J). Therefore also U, — U in £(K),
where K is any compact interval such that K N E is a finite set.

Given € >0, let K, be so chosen that K. N E is a finite set, while
Jr\x, | D"F [* < (3€)”. Since F,—F in #™® one can find N, such that
IR\KE | D™F, |* < (€)¢ for n > N, . Then

[ 1Ulr<@os [ (U r<Gor n> N
YR\ K, R\ K
and since U, — U in L4K,), we have

lim J (U, — Ul < &,
R

>

that is, U, — U in LY(R).
By (6.4),

| v.pmG =0 (6.10a)
R
for every function G € #™? for which D*G(x) =0,k =0, L,..., u(x) — 1,
x € E. Therefore also
f UD"G = 0 (6.10b)
R
for every such function G. But this implies F € &, which was to be proved.
Suppose F e o™ ?(R). F induces a Taylor field {f} on E
£ = (k) DF(x),  k=0,1,,p(x) — 1, x€E (6.11)
Let F, = Sy .F = SF be the #™?-spline interpolant of the field {f}, that s,
F>(< € yg,’f9

' (6.12)
D¥F (x) = DFF(x), k=0,1,.,ux)—1, x€kF.

We consider Fy as an approximation in &%7 to F, and the map
S: F— F, = SF as an approximation operator. If p = 2 then S is linear,
and it is well known that S is the projection of ™2 on S5, that is,

I F—Fyle= f I F—Gle, (6.13)
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where || !, is the norm (6.5) for p = 2. In fact,
[F=Glo=|F—Fx— (G —Fyla,
and since (G — F,) € %, while
DHF — F)(x) =0 k=01,.,ux)—1,xek),
we have by (6.4)
J'R D™G — F,) D"(F — F,) = 0 (6.142)
and clearly also
y (G — FYF—F)(x9) =0, [=1,.,m (6.14b)

.
fl

Thus
|F— Gl = F—Fl;+|G—Fy|5,

and (6.13) is proved.

For p =2, § is not linear, but hemilinear, i.e., S(aF) = aSF, « € R. Nor 15 §
the projection of #™? on S%? in the sense that | F-S|, = infe. o | F- Gli;.
However,

S2=§ (6.15)

since the extremal ™ P-interpolant of F, = SF is clearly F, . Moreover,
S is of bound 1, that is

ISFl, <VFl,,  Fesns,

N

(£.16)
and equality holds in (6.16) if and only if F e .%. This follows directly from
the definition of S and Theorem 5.1, according to which the spline interpolant
SF'is the extremal ™ ?-interpolant.

Beyond this we prove

THEOREM 6.2. The approximation operator S = S5 that maps the normed
space H™7 onto the cone & = S g% of elementary 7™ P-splines is hemilinear,
idempotent, slightly continuous, and of bound 1.

Proaf. It remains to prove that S is slightly continuous. This means:
F,—F strongly in 2¢™? implies SF, —SF weakly in ™% Since
| SF.ll, <! F.ll,, the sequence {SF,} is bounded, hence weakly compact.
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Suppose {SF,} is a weakly convergent subsequence, SF,— F,. Then
F,es#™? and

D'Fy(x) = lim D*SF,(x) = lim D*F(x) = D*(x),
k=0,1L.,ux)—1,xeE (617

Thus, F, interpolates the same field {f} that F does.
Set

U = (D"SE)™, Uy = D"F)i™. (6.18)

The restriction of U, to any interval J which contains no point of E is a
polynomial of degree < m — 1. On any compact interval K such that K N E
is a finite set {D*U,} converges to {D*U,} uniformly (k =0,1,2,...). By
Theorem 5.1 we conclude that F, is the extremal s#™?-interpolant of the
field {f}, thus F,, = SF and SF, — SF. By familiar arguments one concludes
that not only the subsequence {SF,}, but the sequence {SF,} converges
weakly to SF, which was to be proved.

Remark. Weak convergence of {SF,} implies uniform convergence of
{D*SF,} to D*SF for k =0, 1,...,m — 1, on any compact subset of R. By
the above proof we also know that {D"SF,} converges to D™SF uniformly
on any compact interval K that contains only finitely many of the points
of E. Hence also,

lim J | D"SF, — DmSF|? = 0. (6.19)
H—>m K
We have not been able to prove lim || SF,, — SF ||, = 0. Of course, for p = 2
this is true, that is, Sg.7 is strongly continuous.

In the next theorem FE is assumed to be one of the sequences (3.25a) or
(3.25b), satisfying the conditions (3.29). It was proved in Theorem 3.2 that
a Taylor field {f} defined on such a sequence has an ™ ?-extension if and
only if

Z lf(xz B xi+1 ERREEY x11+m)[p < Ooa (620)

x€E

where the extended divided differences must be interpreted in the proper
way. The class of all such fields is, in the obvious way, a linear space
% = %7 and we norm it as follows:

=1, = 2Iﬂ(xi)lp+ S 1 f Gt i) (621)

x;6E
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Here {x',x%...,x"} is a subsequence of E, x' <{x> < - < x™, and if
X7 <yl = o= X < X then f(x%) in (6.21) stands for fi(x't%)
(k = 0,..., j). It is readily seen that £%:? with the above norm is a uniformly
convex Banach space.

We define the map R = RY;” from the space # onto the cons & by

REZf) = Fu = SET (622

We consider ¥ both with the relative strong and weak topologies of the
space ™7, In the context of the boundary-value problem, R is the map
of the boundary-value vector as an element of 4 onto the solution as an
element of &°; R~ is the inverse map. We prove

THEOREM 6.3. The map R = Ry 7. £3:? — S 57 is bounded and slightly
continuous. The inverse map R is bounded and continuous.

Proof. For Fye% set {f} = R'F,. In the first part of the proof of
Theorem 3.1 (with extension indicated in the proof of Theorem 3.1a) it is
shown that

XSGty Xaa s Xeo)? < Gy | | DUE 7 (6.23)
2;€E R

for some constant C; . On the other hand, >, | f(x?)|? = Z;":l L F(xD1%
Thus R~ is bounded. In similar way one finds for F.,» € &, {f*} = R "

IS

Z \f(xi [AEEE) x'i+-7i1) _fn(xz 300ty xz'+m)]p < C:Z J i DMF* - D’mF*n ETI (6'24>
z;eE R
for some constant C, . One concludes that & is contintious.

For {f} € % set F, = R{f}. By the second part of Theorem 3.1 we havs

J | D"Fo 1P < Cy Y 1 F (X soees Xiym)]? (6.25)
R z;eE
for some constant C; . Hence R is bounded. Since & with the weak topology
is locally compact, R is bounded and R-! is continuous one concludes in
familiar fashion that R, as a map from # to % with the weak topology, is
continuous. Thus the theorem is proved.

Remark. As before, we observe that weak convergence of {F,”} implies
uniform convergence of {D*F,"} for k =90,1,..,m — 1 on any compact
subset of R; also lim [ | D™F,» — D™"F, |? = 0 for any compact interval X
that contains only finitely many points of E. For p = 2, the map R = RE
is linear, hence boundedness of R implies (strong) continuity. In this case,
R is a norm isomorphism between # and & as a subspace of ™2
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7. CARDINAL INTERPOLATION

The problem of cardinal interpolation is to determine a function F, with
specified properties, that interpolates (extends) a given function f whose
domain is Z, the class of rational integers. We also include the problem of
interpolating a Taylor field {f} with domain Z, where we require so-called
Hermite interpolation of the data

(1/kY) D*F(G) = fi)), k=0,1,.,p—1, ieZ (7.1)

p; is the multiplicity of the interpolation node /.
By Theorem 3.2 there exists a solution F e #™:?(R) of this last problem
with p; < m (i € Z) if and only if

i uii | dynf (D)7 < 0. (7.2)

Here (1/m!) 4,7 (i) denotes the extended divided difference f(x; , X5 5., Xim11)
of Section 3, where

Xy =Xg= """ =Xy =1, Xyj—t1 = 770 = Xy = 2 - 1:

etc. If (7.2) is satisfied there is, by Theorem 5.1, a unique 5" ?-spline F,
of the field {f}, and Fy is the extension of {f} with minimal [y | D™F |.
If p=2, F, is the common polynomial (of degree 2m — 1) spline with
2m — 1 — u; continuous derivatives at the point i€ Z. The above result
generalizes Theorem 2 of Schoenberg’s paper [10], where p = 2, u =1 are
assumed (also compare Theorem 9 of [11]).

We wish to present an 5™ ?-interpolant of the cardinal field (7.1), which
is not the extremal interpolant (unless p = 2), but has the advantage that it
js given as a series expansion involving a finite (small) number of basic
functions rather than the solution of a boundary-value problem with
infinitely many boundary conditions. For simplicity we consider only the case

(i = | = const, I<p<m ieZ. (7.3)
In this case we have fork =0, 1,...,p — 1

1 ,
il Akmf(l)

== [is i"'-y i’ i + ]-a l + 13-";ﬁ)(i)ﬁfl(i):'-'afu—k—l 5.ﬁ)(l _l- 1)3ﬁ(l + 1)9"'9]
(7.4)



Tad

FF-P.EXTENSIONS BY ## ™ P-SPLINES 27

in the notation of Section 3, with / appearing (¢ — k) times, (7 -~ 1) w times
(f 20 — &k <m + 1), etc.
Consider, in particular, fields {¢*} (k =0, 1,..., 0 — 1) defined such that

Ajm'ek(l.) == 8[05,7'76 s j = 0, i,..., m — l’ .fe 17_. {75}

Let G* be the function G of the proof of Theorem 3.2 [see (3.39)] for the
configuration X* [see (3.34)], where the first w — & x’s are O, the next u
(if 2u — k <m + 1) are 1, etc. Then we have a function G* € #™¥ such
that ¢* = G* satisfies (7.5). Let H* be the #™?-spline that interpolates the
field {G*} on Z so that

A47°H () = 8,85, Jj=0,1,..,m—1, icZ {1.6)

H® + P, for any P € #™-! would also be such a spline. The particular choice
of G* serves to eliminate the ambiguity in the definition of H*. Since G¥(x) = 0
for x < 0 [see (3.39)], we also have

DEH¥i) =0, k=01.,u—1; i=—1,—2.. (D

The series

o~
=1
o0
&

F) = 3 3 476 G — 1)

converges for x = —1, —2,... [where F,(x) = 0], and
(A N+n u—1 91/[‘
% JIDm Y Y Ay Hi(x — i)}» dx
R =N k=0 S
N+n p—1 . 21;"11
< ¥ ¥ 1oy | (ol
i=N k=0 23 ]

Becanse of hypothesis (7.2) it follows that (7.8) converges in the normed
space ™ ?(R). The same is true of the series

—1 wu—-1

F(x)= Y ¥ A7) H(—x +i). (7.8b)

f=—m k=0
Because of (7.6) we have

A,m(F, + F)() = Ayf (@), k=0,1.,u—1, ieZ {19
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Finally, we determine P € ™1 such that

1
D*P(0) = (k—!fk. —F)©), k=0l.,p—1,
1 (7.10)
D*P(1) = (Efk _ F+) ), k=01,.,p—1,
etc. Then
F=P+F +F. (7.11)

is a function in 3#™-? which satisfies (7.1).
In the case p = 2, (7.11), being the sum of #™2%-gplines, is an H™%
spline. In this case the functions

1, %,..., x™7, H¥(x), H¥*(x — 1),..., H¥(—x + 1), H¥(—x + 2),...,
k=01,,p—1 (712

form a Schauder basis of the Hilbert space %> (see Section 6).

TueoreM 7.1. The functions H¥(x — i), HY(—x + i) defined above
k=0,1,.,p0—1;i=0,1,2,..) are H#™?-splines, and for any Taylor
field {f} on Z of constant height p. << m that can be interpolated by an H#™*-
Junction the expansion

R = P+ % | B A ) x4 ) 3 Anf @) B = ),

with Pe P chosen according to (7.10), converges in the normed space
H PR and is an H™P-interpolant of {f}. If p = 2 then F is the extremal
Hr2interpolant of {f}, and the functions (7.12) form a Schauder basis of the

7,2

Hilbert space 7, .
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